Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Med Virol ; 94(7): 3251-3256, 2022 07.
Article in English | MEDLINE | ID: covidwho-1711127

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered bat-origin coronavirus with fatal pathogenicity for neonatal piglets. There is no vaccine to prevent SADS-CoV infection or clinically approved drugs targeting SADS-CoV. Therefore, unraveling cellular factors that regulate SADS-CoV for cell entry is critical to understanding the viral transmission mechanism and provides a potential therapeutic target for SADS-CoV cure. Here, we showed that Type I interferon (IFN-I) pretreatment potently blocks SADS-CoV entry into cells using lentiviral pseudo-virions as targets whose entry is driven by the SADS-CoV Spike glycoprotein. IFN-I-mediated inhibition of SADS-CoV entry and replication was dramatically impaired in the absence of TET2. These results suggest TET2 is found to serve as a checkpoint of IFN-I-meditated inhibition on the cell entry of SADS-CoV, and our discovery might constitute a novel treatment option to combat against SADS-CoV.


Subject(s)
Alphacoronavirus , Chiroptera , Dioxygenases , Alphacoronavirus/physiology , Animals , DNA-Binding Proteins/physiology , Dioxygenases/physiology , Humans , Interferon Type I , Spike Glycoprotein, Coronavirus
2.
Epigenomics ; 14(3): 153-162, 2022 02.
Article in English | MEDLINE | ID: covidwho-1622527

ABSTRACT

Smoking could predispose individuals to a more severe COVID-19 by upregulating a particular gene known as mdig, which is mediated through a number of well-known histone modifications. Smoking might regulate the transcription-activating H3K4me3 mark, along with the transcription-repressing H3K9me3 and H3K27me3 marks, in a way to favor SARS-CoV-2 entry by enhancing the expression of ACE2, NRP1 and NRP2, AT1R, CTSD and CTSL, PGE2 receptors 2-4, SLC6A20 and IL-6, all of which interact either directly or indirectly with important receptors, facilitating viral entry in COVID-19.


Lay abstract The role of smoking in development of several respiratory diseases has been clearly established. A significant proportion of these deleterious effects is mediated through epigenetic mechanisms, particularly histone modifications. Recent evidence indicates that smoking induces the expression of a mediator known as mdig, which in turn alters the transcription of several key proteins that have been implicated in development of COVID-19.


Subject(s)
COVID-19/genetics , Dioxygenases/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , Histones/genetics , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Smoking/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/virology , Cathepsin D/genetics , Cathepsin D/metabolism , Cathepsin L/genetics , Cathepsin L/metabolism , Dioxygenases/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Methylation , Neuropilin-1/genetics , Neuropilin-1/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/metabolism , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Smoking/metabolism , Smoking/pathology , Virus Internalization
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(2): 159070, 2022 02.
Article in English | MEDLINE | ID: covidwho-1596012

ABSTRACT

N-[4-hydroxyphenyl]retinamide, commonly known as fenretinide, a synthetic retinoid with pleiotropic benefits for human health, is currently utilized in clinical trials for cancer, cystic fibrosis, and COVID-19. However, fenretinide reduces plasma vitamin A levels by interacting with retinol-binding protein 4 (RBP4), which often results in reversible night blindness in patients. Cell culture and in vitro studies show that fenretinide binds and inhibits the activity of ß-carotene oxygenase 1 (BCO1), the enzyme responsible for endogenous vitamin A formation. Whether fenretinide inhibits vitamin A synthesis in mammals, however, remains unknown. The goal of this study was to determine if the inhibition of BCO1 by fenretinide affects vitamin A formation in mice fed ß-carotene. Our results show that wild-type mice treated with fenretinide for ten days had a reduction in tissue vitamin A stores accompanied by a two-fold increase in ß-carotene in plasma (P < 0.01) and several tissues. These effects persisted in RBP4-deficient mice and were independent of changes in intestinal ß-carotene absorption, suggesting that fenretinide inhibits vitamin A synthesis in mice. Using Bco1-/- and Bco2-/- mice we also show that fenretinide regulates intestinal carotenoid and vitamin E uptake by activating vitamin A signaling during short-term vitamin A deficiency. This study provides a deeper understanding of the impact of fenretinide on vitamin A, carotenoid, and vitamin E homeostasis, which is crucial for the pharmacological utilization of this retinoid.


Subject(s)
Fenretinide/pharmacology , Vitamin A/pharmacology , beta Carotene/metabolism , Animals , Body Weight/drug effects , Dioxygenases/metabolism , Intestinal Absorption/drug effects , Intestines/drug effects , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Models, Biological , Retinol-Binding Proteins, Plasma/deficiency , Retinol-Binding Proteins, Plasma/metabolism , Vitamin A/blood , Vitamin A Deficiency/blood , Vitamin A Deficiency/pathology , Vitamin E/blood , Vitamin E/metabolism , beta Carotene/blood
5.
Theranostics ; 11(16): 7970-7983, 2021.
Article in English | MEDLINE | ID: covidwho-1337804

ABSTRACT

The novel ß-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 177 million people and resulted in 3.84 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provided evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is an important regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. Meanwhile, we also validated that environmental factor arsenic is able to induce mdig, NRP1 and NRP2, and genetic disruption of mdig lowered expression of NRP1 and NRP2. Furthermore, mdig may coordinate with the Neanderthal variants linked to an elevated mortality of COVID-19. These data, thus, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be the one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Dioxygenases/metabolism , Histone Demethylases/metabolism , Neuropilin-1/metabolism , Nuclear Proteins/metabolism , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Alveolar Epithelial Cells/metabolism , Animals , COVID-19/epidemiology , Cathepsins/metabolism , Cell Line , Cells, Cultured , Dioxygenases/biosynthesis , Dioxygenases/genetics , Environmental Exposure , Histone Demethylases/biosynthesis , Histone Demethylases/genetics , Histones/metabolism , Humans , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Pandemics , Rats , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
6.
Infect Genet Evol ; 92: 104888, 2021 08.
Article in English | MEDLINE | ID: covidwho-1208930

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mediated Coronavirus disease-19 (COVID-19) has affected millions of individuals around all corners of the globe. Symptoms and severities of infection with this highly contagious virus vary among individuals and there is disparity in the number of COVID-19-related casualties across different ethnic groups. The primary receptor for SARS-CoV-2 entry into the host cells is angiotensin-converting enzyme 2 (ACE2). Certain variants of ACE2 are known to be associated with COVID-19 comorbidities such as hypertension, cardiovascular complications, diabetes, chronic lung disease, etc. In this study, we looked into the geographic distribution of disease-associated variants of ACE2 as well as closely located PIR gene to explore any possible correlation with the disparities in COVID-19 severities and casualties across ethnic groups. Frequencies of the ACE2 variants associated with COVID-19 comorbidities are higher in the European and the admixed American populations. These variants are also present with stronger pairwise linkage disequilibrium (LD) in the European and the admixed American populations. On the other hand, the variants with protective role are more prevalent in the East and the South Asian populations. Strong pairwise LD exists among the activity modifying (modifier) variants of the PIR and ACE2 genes only in the European super-population. Absence of these PIR variants in the South Asian population may contribute to the overall lower COVID-19 case fatality rates (CFR) despite the dense population in this region.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/ethnology , COVID-19/genetics , Dioxygenases/genetics , SARS-CoV-2 , Alleles , COVID-19/epidemiology , Genetic Predisposition to Disease , Genetic Variation , Global Health , Haplotypes , Humans , Severity of Illness Index
7.
JAMA Cardiol ; 5(10): 1170-1175, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-636079

ABSTRACT

Importance: Cytokine release syndrome is a complication of coronavirus disease 2019. Clinically, advanced age and cardiovascular comorbidities are the most important risk factors. Objective: To determine whether clonal hematopoiesis of indeterminate potential (CHIP), an age-associated condition with excess cardiovascular risk defined as the presence of an expanded, mutated somatic blood cell clone in persons without other hematological abnormalities, may be associated with an inflammatory gene expression sensitizing monocytes to aggravated immune responses. Design, Setting, and Participants: This hypothesis-generating diagnostic study examined a cohort of patients with severe degenerative aortic valve stenosis or chronic postinfarction heart failure, as well as age-matched healthy control participants. Single-cell RNA sequencing and analyses of circulating peripheral monocytes was done between 2017 and 2019 to assess the transcriptome of circulating monocytes. Exposures: Severe degenerative aortic valve stenosis or chronic postinfarction heart failure. Main Outcomes and Measures: CHIP-driver sequence variations in monocytes with a proinflammatory signature of genes involved in cytokine release syndrome. Results: The study included 8 patients with severe degenerative aortic valve stenosis, 6 with chronic postinfarction heart failure, and 3 healthy control participants. Their mean age was 75.7 (range, 54-89) years, and 6 were women. Mean CHIP-driver gene variant allele frequency was 4.2% (range, 2.5%-6.9%) for DNMT3A and 14.3% (range, 2.6%-37.4%) for TET2. Participants with DNMT3A or TET2 CHIP-driver sequence variations displayed increased expression of interleukin 1ß (no CHIP-driver sequence variations, 1.6217 normalized Unique Molecular Identifiers [nUMI]; DNMT3A, 5.3956 nUMI; P < .001; TET2, 10.8216 nUMI; P < .001), the interleukin 6 receptor (no CHIP-driver sequence variations, 0.5386 nUMI; DNMT3A, 0.9162 nUMI; P < .001;TET2, 0.5738 nUMI; P < .001), as well as the NLRP3 inflammasome complex (no CHIP-driver sequence variations, 0.4797 nUMI; DNMT3A, 0.9961 nUMI; P < .001; TET2, 1.2189 nUMI; P < .001), plus upregulation of CD163 (no CHIP-driver sequence variations, 0.5239 nUMI; DNMT3A, 1.4722 nUMI; P < .001; TET2, 1.0684 nUMI; P < .001), a cellular receptor capable of mediating infection, macrophage activation syndrome, and other genes involved in cytokine response syndrome. Gene ontology term analyses of regulated genes revealed that the most significantly upregulated genes encode for leukocyte-activation and interleukin-signaling pathways in monocytes of individuals with DNMT3A (myeloid leukocyte activation: log[Q value], -50.1986; log P value, -54.5177; regulation of cytokine production: log[Q value], -21.0264; log P value, -24.1993; signaling by interleukins: log[Q value], -18.0710: log P value, -21.1597) or TET2 CHIP-driver sequence variations (immune response: log[Q value], -36.3673; log P value, -40.6864; regulation of cytokine production: log[Q value], -13.1733; log P value, -16.3463; signaling by interleukins: log[Q value], -12.6547: log P value, -15.7977). Conclusions and Relevance: Monocytes of individuals who carry CHIP-driver sequence variations and have cardiovascular disease appear to be primed for excessive inflammatory responses. Further studies are warranted to address potential adverse outcomes of coronavirus disease 2019 in patients with CHIP-driver sequence variations.


Subject(s)
Aortic Valve Stenosis/complications , Clonal Hematopoiesis/genetics , Gene Expression , Heart Failure/complications , Aged , Aged, 80 and over , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/complications , Case-Control Studies , Cytokine Release Syndrome/genetics , Cytokines/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , DNA-Binding Proteins/genetics , Dioxygenases , Female , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Humans , Male , Middle Aged , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proto-Oncogene Proteins/genetics , Receptors, Cell Surface/metabolism , Receptors, Interleukin-6/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL